CATABOLITE REPRESSION OF PROTOPORPHYRIN IX BIOSYNTHESIS IN ESCHERICHIA COLI K-12

Rozanne POULSON, Karen J. WHITLOW and W. James POLGLASE

Department of Biochemistry, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1W5

Received 24 December 1975

1. Introduction

It was reported previously [1] that streptomycindependent (SM-dependent) mutants of Escherichia coli strains B and K-12 cultured in the presence of a concentration of dihydrostreptomycin which is nonlimiting for growth contain very little 503 nm pigment compared with wild-type parent cells. Until now, however, the principle underlying this difference was unknown. Recently, we showed [2] that the 503 nm pigment in yeast is identical with prototetrahydroporphyrin IX and that it is derived from protoporphyrinogen IX by auto-oxidation. It has also been established [3] that glucose repression of protoporphyrinogen oxidase results in the accumulation of its substrate - protoporphyrinogen IX - which can be readily detected spectrophotometrically in intact cells as prototetrahydroporphyrin IX. In addition, we have demonstrated [4,5] that the degree of catabolite repression of SM-dependent E. coli can be modified by varying the dihydrostreptomycin concentration of the growth medium. On the basis of these observations we postulated that SM-dependent mutants of E. coli cultured in the presence of a dihydrostreptomycin concentration which is nonlimiting for growth are unable to accumulate protoporphyrinogen IX, as indicated by the low level of 503 nm pigment [1], because protoporphyrinogen oxidase is derepressed in these cells. As reported here, we have now obtained confirmation of this inference.

2. Materials, methods and results

SM-dependent mutants of *E. coli* cultured in a medium containing a dihydrostreptomycin concen-

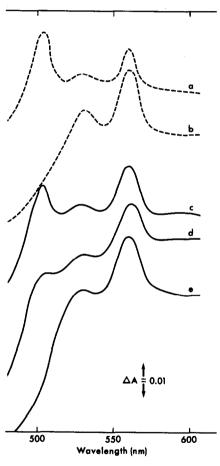


Fig. 1. Difference spectra (reduced minus oxidised) or intact cells of wild-type (----) and SM-dependent mutants (----) of E. coli K-12. Cells were grown to mid log phase under forced aeration at 37° C in a minimal salts medium containing . (a) 0.4% glucose; (b) 0.8% acetate; (c) 0.4% glucose and $10 \mu g$ DHSM/ml; (d) 0.4% glucose and $30 \mu g$ DHSM/ml; (e) 0.4% glucose and $1000 \mu g$ DHSM/ml. Difference spectra were determined as in [1].

Table 1 Relationship between catabolite repression and the level of prototetrahydroporphyrin IX in wild-type and SM-dependent mutants of E. coli K-12^a

Strain	Carbon source	DHSM ^b (µg/ml)	Fumarase ^c (units ^d /mg protein)	Relative level of prototetra- hydroporphyrin ^e
K-12	Glucose		124 (1.00) ^f	1.00
SM-d K-12	Glucose	1000	449 (3.62)	0.00
SM-d K-12	Gluconate	1000	310 (2.50)	0.00
SM-d K-12	Glucose	10	130 (1.05)	0.94

^a Cells were grown to mid log phase under forced aeration at 37°C in a minimal salts medium containing 0.4% glucose or 0.4% gluconate supplemented with dihydrostreptomycin as indicated.

Table 2 Specific activities of coproporphyrinogenase and protoporphyrinogen oxidase of wild-type and SM-dependent mutants of E. coli K-12a

Strain	Carbon Source	DHSM ^b (µg/ml)	Specific activity (nmoles product/n Coproporphyrin- ogenase ^c	ng protein/h) Protoporphyrin- ogen oxidase ^d
K-12	Glucose	_	2.33	1.19
K-12	Acetate	_	2.65	4.36
SM-d K-12	Glucose	1000	2.43	4.30
SM-d K-12	Glucose	30	2.48	2.62
SM-d K-12	Glucose	10	2.17	1.80

a Cells were grown to mid log phase under forced aeration at 37°C in a minimal salts medium containing 0.4% glucose or 0.8% acetate supplemented with dihydrostreptomycin as indicated. Cells were disrupted by sonic treatment and centrifuged at 17 000 g for 30 min. The supernatant was recentrifuged at 150 000 g for 1 h to give a soluble cytoplasmic fraction and a membrane fraction. Coproporphyrinogenase activity was located almost exclusively in the soluble cytoplasmic fraction while all of the protoporphyrinogen oxidase activity was associated with the membrane fraction.

b Dihydrostreptomycin.

^c Assayed in cell-free extracts as described in [4].

d Unit is defined as $\triangle OD_{240 \text{ nm}} = 0.01/\text{min.}$ e Level relative to that determined in glucose-grown, wild-type E. coli K-12. Prototetrahydroporphyrin IX levels were measured by reduced minus oxidised difference spectrophotometry [1].

Activity relative to that obtained in cell-free extracts prepared from glucose-grown, wild-type E. coli K-12.

^b Dihydrostreptomycin.

^c Assayed as described in [7].

d Assayed as described in [8].

tration which is non-limiting for growth ($1000 \,\mu\text{g/ml}$) have relaxed catabolite repression, and catabolite repression is restored when the mutants are cultured in the presence of a level of antibiotic which is limiting for growth ($10 \,\mu\text{g/ml}$) (cf. level of catabolite-sensitive enzyme, fumarase, in cells grown in the presence of $10 \,\text{and} \, 1000 \,\mu\text{g}$ dihydrostreptomycin/ml, table 1). In the present studies, therefore, the extent of catabolite repression of SM-dependent mutants was controlled by varying the dihydrostreptomycin concentration of the growth medium, while in wild-type cells it was modified by varying the carbon source [6].

The level of prototetrahydroporphyrin IX (used here as a measure of the protoporphyrinogen IX content of the cells) in an SM-dependent $E.\ coli$ varied inversely with the dihydrostreptomycin concentration of the growth medium (table 1 and fig.1). The highest level of prototetrahydroporphyrin IX was observed in glucose-grown, wild-type cells and in SM-dependent mutants grown in a medium containing $10\ \mu g$ dihydrostreptomycin/ml. No prototetrahydroporphyrin IX was detected in cells of either wild-type or SM-dependent $E.\ coli$ in which catabolite repression was relaxed.

The state of catabolite repression of the cells had little effect on the level of coproporphyrinogenase (table 2). In contrast, the level of protoporphyrinogen oxidase — like that of the catabolite-sensitive enzymes, fumarase and acetohydroxy acid synthase — increased as the degree of catabolite repression diminished (cf. tables 1 and 2 and [5]). The level of protoporphyrinogen oxidase was highest in acetate-grown, wild-type cells and SM-dependent mutants cultured in the presence of 1000 µg dihydrostreptomycin/ml.

In summary, cells in which catabolite repression is relaxed have a high level of protoporphyrinogen oxidase and contain very little protoporphyrinogen IX, whereas in catabolite-repressed cells these levels are reversed. These results strongly support the suggestion that protoporphyrinogen IX accumulates only in catabolite-repressed cells of *E. coli* because protoporphyrinogen oxidase, which converts it to protoporphyrin IX, is repressed in these cells. Control of catabolite-sensitive enzymes by dihydrostreptomycin in SM-dependent mutants of *E. coli* has now been demonstrated for several enzymes [4,5,9]. However, the relationship between this in vivo effect and the action of dihydrostreptomycin on general protein synthesis which has been observed in vitro [10] remains unresolved.

Acknowledgement

This investigation was supported by the Medical Research Council of Canada.

References

- [1] Kamitakahara, J. R. and Polglase, W. J. (1970) Biochem. J. 120, 771-775.
- [2] Poulson, R. and Polglase, W. J. (1973) Biochim. Biophys. Acta 329, 256-263.
- [3] Poulson, R. and Polglase, W. J. (1974) FEBS Lett. 40, 258-260.
- [4] Coukell, M. B. and Polglase, W. J. (1969) Biochem. J. 111, 279-285.
- [5] Whitlow, K. J. and Polglase, W. J. (1975) J. Bacteriol. 121, 9-12.
- [6] Whitlow, K. J. and Polglase, W. J. (1974) FEBS Lett. 43, 64-66.
- [7] Poulson, R. and Polglase, W. J. (1974) J. Biol. Chem. 249, 6367-6371.
- [8] Poulson, R. and Polglase, W. J. (1975) J. Biol. Chem. 250, 1269-1274.
- [9] Coukell, M. B. and Polglase, W. J. (1969) J. Gen. Microbiol. 57, 419-427.
- [10] Pestka, S. (1967) Bull. N.Y. Acad. Med. 43, 126-148.